Energy, data, environment
1427 stories
·
2 followers

Nationalise Us

1 Share
Read the whole story
strugk
5 days ago
reply
Cambridge, London, Warsaw, Gdynia
Share this story
Delete

Swedish startup bets big on zinc-ion batteries with world’s first megaplant

1 Share

Swedish startup Enerpoly has opened the world’s first zinc-ion battery megafactory. Its vision is to scale a better alternative to lithium-ion for storing renewable energy over longer periods of time.

The Enerpoly Production Innovation Center (EPIC) facility is located north of Stockholm. Commissioning has already begun and the plant is expected to make the first zinc-ion batteries next year. The company aims to reach a maximum production capacity of 100MWh by 2026 — enough energy to power around 20,000 homes.

In 2018, Dr. Mylad Chamoun made a breakthrough in zinc-ion battery chemistry while pursuing his PhD at Stockholm University. Later that year, he teamed up with his former colleague Dr. Samir Nameer and the duo founded Enerpoly. The partners saw a gaping hole in the market where lithium-ion wasn’t competitive — offering 2 to 10 hour energy storage. They believed zinc-ion batteries could fill the gap.

Making zinc-ion batteries work

Using zinc in batteries isn’t anything new. The AA batteries that power your most precious (read, junk) toys and gadgets are made from zinc and manganese oxide. This chemistry has made companies like Energizer and Duracell a tonne of money.

However, zinc-ion batteries have historically, for lack of a better word, sucked at recharging. This is because zinc-ion chemistries are plagued by dendrites — crystals that cause short circuits. They also lose capacity fast.

The <3 of EU tech

The latest rumblings from the EU tech scene, a story from our wise ol' founder Boris, and some questionable AI art. It's free, every week, in your inbox. Sign up now!

“Enerpoly has innovated across the entire zinc-ion battery system — including anode, cathode, electrolyte, and separator design — to solve these inherent problems,” the company’s CEO, MIT-educated aerospace engineer Eloisa da Castro, told TNW.

Enerpoly uses zinc metal for the battery’s anode, manganese dioxide for the cathode, and a water-based electrolyte to carry charged particles between the two sides.

Unlike lithium, zinc is globally abundant. Moreover, Sweden is home to the largest zinc reserves in Europe — about 2% of the world’s total. Enerpoly hopes to establish a completely European supply chain for its batteries and make the continent a “zinc-ion powerhouse.”

Zinc-ion for energy storage

Different from lithium-ion battery developers, Enerpoly is targeting the energy storage market – not EVs and smartphones. Use cases include renewable energy storage, shifting energy loads on the grid, and increasing power resiliency — within the 2-10 hour storage mark.

The batteries are modular — multiple packs can be placed in parallel to make larger systems. The company claims the packs are non-toxic, non-flammable, and non-explosive.

Because the materials they use are a lot more abundant, Enerpoly believes it can be cost-competitive with myriad other short-to-mid term energy storage technologies under development. These include lithium-ion batteries, thermal heat storage devices, liquid air batteries, iron flow batteries, gravity batteries, and even this CO2 dome.

And investors seem to agree. To date, the company has raised just shy of €15mn. Over €8mn of that came from the Swedish Energy Agency to construct the EPIC factory.

CEO Da Castro told TNW the company is also planning to close its Series A this year, as they look to scale up towards the 2026 target of 100MWh. In July, Enerpoly acquired state-of-the-art dry electrode manufacturing equipment from bankrupt startup Nilar that it will use in its new plant. Beyond 2026, the startup is eyeing its first gigafactory.

Read the whole story
strugk
5 days ago
reply
Cambridge, London, Warsaw, Gdynia
Share this story
Delete

The Uruguayan company teaching people how to turn regular cars into EVs

1 Share

In 2010, Uruguayan president-elect José Mujica made headlines for the bright blue mini-truck he rode to his inauguration ceremony.

The vehicle, which looked like any ordinary pickup truck, was used to convey a message: Uruguay was serious about its quest to become more environmentally friendly. The gas-powered four-wheeler had been transformed into an electric vehicle by Organización Autolibre, a local retrofitting company.

Viral press coverage of the ceremony put the company in the spotlight, sparking interest from EV enthusiasts inside and outside Uruguay who wanted to convert their gas-guzzling vehicles into economical EVs. 

“This news coverage in many media outlets across Latin America gave a lot of visibility to this technology, and to this day we tour the region every year across Peru, Mexico, Argentina,” Gabriel González Barrios, founder and CEO of Organización Autolibre, told Rest of World. “The same distributors of Autolibre systems permanently invite us to train the necessary technicians to generate the local ecosystem for the local development of this industry.”

Over the years, González Barrios and his team at Organización Autolibre have helped convert thousands of traditional vehicles into e-cars across 14 Latin American countries. The company trains individuals and mechanics through online courses, and supervises conversions for corporate fleets. So far, at least 40 companies have used Organización Autolibre’s services, González Barrios said. While some countries have flagged concerns about the safety of retrofitting vehicles, González Barrios said his company is leading efforts to make it a safer and standardized practice across Latin America.

“We want to show it’s an industrialized process,” Andrés García, the owner of a retrofitting shop in Bogotá, Colombia, which works with Autolibre, told Rest of World. “This is not for hobbyists or people who are inexperienced.”

González Barrios had the idea for the company in 2006 after watching the Al Gore-produced climate change documentary An Inconvenient Truth. A distributor of chemical products for gas-fueled vehicles at the time, he was inspired to address environmental concerns from his corner of the world.

“We decided to change the combustion engines of our own vehicles into zero-emission electric ones,” said González Barrios. The experiment was successful and affordable, and led him to found Organización Autolibre.

González Barrios initially used some American EV kits to retrofit vehicles, but when those became too costly, Autolibre partnered with Zhuhai Enpower Electric, a Chinese electric power system company.

Over the last few years, as the popularity of EVs has grown, so has interest in retrofitting regular vehicles, Bruno González, head of sales at Autolibre, told Rest of World. In 2011, the company retrofitted a fleet of delivery vans for Bimbo, the largest bread-making company in the world. Bimbo did not respond to questions from Rest of World.

In its 2020 report about the practice, the Latin American Association of Sustainable Mobility revealed that at least 145 retrofitted vehicles had been officially registered.

The Latin American Retrofit Association, co-founded by González Barrios, now has more than 30 members across the region. All are either distributors of EV retrofit kits or have workshops specializing in the process.

Retrofitting electric vehicles has been practiced worldwide for over 30 years, with countries like Japan and Australia establishing national guidelines for the process. A report from the Latin American Association of Sustainable Mobility lists 21 companies that currently sell EV retrofit kits for different vehicles across the world.

The biggest incentive to retrofit a vehicle is its affordability, said González Barrios. Most new EVs available in Latin America remain out of reach for regular car users. One of the most popular models, the electric Renault Kwid, costs around $18,100. Converting an existing gas or diesel-engine car into an electric vehicle using Autolibre’s process starts at $6,000.

Since the practice is largely a DIY process, there are no official statistics on the retrofitting industry in Latin America. Many retrofitting jobs are done “by tinkerers who seek to extend the life of their petrol cars since they can’t afford a new electric one,” Adolfo Rojas, president of the Association of Entrepreneurs to Promote Electric Vehicles in Peru, told Rest of World.

The retrofitting process requires skilled EV technicians to remove the engine, gas tank, exhaust, and other components within a regular car, and fit the electric motor, batteries, on-board charger, and computer into the empty space. Weight has to be carefully distributed so the car doesn’t tilt to one side. The original electrical components — such as airbags and sensors — must function properly, and the battery shouldn’t overheat. Autolibre Academy, the company’s educational branch, offers online courses on these basic skills to any EV enthusiast interested in retrofitting, González said.

But Rojas said there are risks associated with the retrofitting process.

Retrofitting kits, many of which are available on online marketplaces like Alibaba or MercadoLibre, often don’t guarantee a “minimum level of safety and quality for the retrofit unit,” Rojas said.

Once they’ve been modified, retrofitted vehicles must get government permits that allow them to be on the road in specific countries, according to retrofitting experts.

In 2021, the Chilean transport ministry passed legislation banning the retrofitting of all used passenger vehicles. “Retrofits were being done, but keeping the car’s safety level was being overlooked,” Rodrigo Salcedo, president of Chile’s Electric Vehicle Association, told Rest of World. A safety compliance regulation is being prepared by the transport and energy ministries.

In Colombia, where retrofitted vehicles face no legal impediment, some are arguing for tighter controls.

A nine-week newsletter series exploring the ways technology is reshaping spirituality and religion.

García, from the car shop in Bogotá, said he is working with fellow retrofitting experts and enthusiasts to lobby for specific regulation, including meeting with the Colombian transport department and SENA, the country’s professional and technical training service. He said his company sells retrofit kits exclusively to certified technicians.

Jairo Novoa, one of García’s customers, retrofitted a 1981 BMW. He told Rest of World the process made sense for an old car like his because spare or repair parts are expensive and hard to find.

Although most of Colombia’s more than 11,000 electric vehicles are brand-new, retrofitted ones “do not need to envy” them, said Novoa. Except maybe, “really expensive ones like Tesla.”

Read the whole story
strugk
7 days ago
reply
Cambridge, London, Warsaw, Gdynia
Share this story
Delete

Who killed the world?

2 Shares

This is a prototypical world in a 1950s sci-fi film.

It takes place in a world similar to one in which the viewer lives.

But there’s an existential threat looming in the background. It’s mysterious, scary – and a bit exciting.

In the narrative, the protagonists explore this mysterious phenomenon.

They use science and technology to learn more about it.

And even though the story presents the possibility of failure, the protagonists figure it out.

It feels like the triumph of humanity.

I analyzed the top 200 sci-fi films and tv shows every decade from the 1950s to present day.1 What I found was that sci-fi narratives from yesteryear were quite different from today’s stories.

¹ Based on votes the film or tv show received from IMDB users. More on methodology at the end of the story.

In the 1950s, only a few sci-fi films and shows took place in the future, like the Fire Maidens of Outer Space (1956) which is a film about astronauts landing on one of Jupiter’s moons. For the most part, these stories were set in the audience’s present day – so, the 1950s.

(Hover on a box for details)

In these 1950s stories, the world is often upended by an existential threat.

But in the majority of films, the protagonists figure it out – and leave the world better than the beginning of the story.

Sci-fi is an amazing genre.

It helps us explore our feelings about the unknown, the future, and the possible. It lets us imagine “what if” scenarios, and then build out rich worlds that our minds can occupy. It depicts dystopias we should fend off and utopias we should seek – and it teases us with the scintillating possibility that humans may actually be able to build the world we want.

But over the last few generations, it’s been harder for us to imagine this better world – and our sci-fi reflects that.

This is a prototypical sci-fi setting in more recent years.

We’re in the near future – often a world that looks like ours, but with hints that something has already gone terribly wrong.

Today’s sci-fi is more likely to depict a world that is worse than our reality.

It’s maybe even a dystopian or post-apocalyptic world

This world is almost always marked by economic inequality, human suffering, and sometimes even a militarized, authoritarian society.

In this world, the protagonists face an existential threat.

And to defeat the threat, we must face societal conflicts that feel insurmountable – and we must face conflicts within ourselves that make us question who we are and what we’re doing .

Ultimately, the story is likely to be a commentary on today’s social issues. It’s a warning of what is to come – or a reflection of a current reality that we’ve tried hard to ignore.

The changes to sci-fi stories didn’t happen overnight. Sci-fi slowly evolved over the last few generations.

There’s been a steady increase in sci-fi stories that take place in the future – and it’s usually the near future, like the 2013 film Her – a world where a man falls in love with an artificial intelligence.

Even plots that take place in the present could be interpreted as the near-future.

The stakes are still the same as before; these sci-fi stories still present existential threats.

But we’re now more likely to face these existential threats in a dystopian or post-apocalyptic world, like Mad Max: Fury Road (2015). In the film, the world is a desert wasteland ruled by a warlord who enslaves several women to produce his offspring. When the women escape, in hopes of finding a preserved paradise, they leave behind a message:

“Who killed the world?”

This dystopian society is more likely to be marked by inequality – gaps in opportunity, wealth, and basic rights.

This often leads to a world marked by great amounts of suffering.

And increasingly, sci-fi stories depict militarized societies – although we might be seeing that trend turn around this decade.

There’s almost always a “bad guy” – a human antagonist who tries to kill the world or at least gets in the way of saving the world.

But these days, it’s much more likely that protagonists also have to overcome societal forces – political movements, systemic inequality, rampant capitalism.

These are basically things that seem too big to fix.

It’s also far more likely that the narrative explores inner conflicts – moral dilemmas, identity crises, and wrestling with our understanding of what it means to be human.

We don’t just face outside threats; we also face threats within ourselves.

Ultimately, today’s sci-fi stories are far more likely to be a commentary on current social issues. These might be critiques of political ideologies, runaway capitalism, irresponsible innovation, human apathy, or eroding mental health.

But even though the narrative arc starts us off in a terrible place, the protagonists make the world better over the course of the story. Jurassic Park author Michael Crichton argued that this is necessary: “Futuristic science fiction tends to be pessimistic. If you imagine a future that’s wonderful, you don’t have a story.”

It’s often framed as the triumph of humanity.

But it certainly doesn’t feel triumphant. It often feels pessimistic – and it’s something that critics have noticed.

I think it’s because today’s sci-fi is set in a world where humans have already screwed up, and the narrative arc is basically the protagonists digging out of that hole.

Line chart of a narrative arc showing stories start at the bottom of the arc.

But as we walk out of the theater, we’re thrust back into reality – a world where we’re still facing existential threats like climate change, authoritarianism, devious technology, and war. And if these sci-fi stories are prescient, it means that we will soon experience those existential threats; the world will soon turn into a dystopian hellscape; and only after that do we figure it out.

In other words, the worst is still ahead of us.

Line chart of a narrative arc showing the bottom of the arc is ahead of us.

News stories constantly remind us that we’re headed for trouble. Children are being murdered, authoritarianism is on the rise, and Earth is inevitably going to warm so much that it will likely kill millions of people. Given this, how could we possibly imagine a less bleak future?

But maybe that’s what sci-fi can explore.

Author Neal Stephenson wrote in 2011: “Good SF supplies a plausible, fully thought-out picture of an alternate reality in which some sort of compelling innovation has taken place.” Journalist Noah Smith argues that optimistic sci-fi needs to have “several concrete features corresponding to the type of future people want to imagine actually living in.”

So, what if we figure it out?

What if we create spaceships that explore further than we could have ever imagined?

What if we embrace our natural curiosity and work toward discovering more and more of this wondrous universe?

What if we ensure that even the least fortunate among us have reliable housing, food, and healthcare?

What if we reject the notion that an economy must produce more and more, but rather embrace the idea that a functioning society is only as successful as its least privileged soul?

What if we build civilizations that don’t try to conquer nature, but rather try to be a part of it?

What if our technological innovations didn’t come from efforts to decimate each other, but rather from a constant desire to better each other’s lives?

I know, I know.

Right now, it’s hard to see that future. We see terrible things all around us – hunger, disease, mass murder, greed, an increasingly uninhabitable planet.

But unlike the world of Mad Max, our world has not yet been killed. There are still monumental efforts to stop hunger, to limit disease, to build more resilient governments, to wake us from the hypnosis of war, to sail deeper into the galaxy and to see closer into the atom. We can still create a world where the patches of paradise blossom into the wastelands.

I admit it’s hard to see. In fact, I admit that I’ve spent most of my journalism career telling a narrative about the wastelands bleeding into our lives – a sort of fear-mongering, I suppose.

But maybe that’s why it’s so important for us to imagine a different future – precisely because people like me made it so hard to see.

After all, if we can’t see paradise, how can we possibly navigate toward it?

Read the whole story
strugk
54 days ago
reply
Cambridge, London, Warsaw, Gdynia
Share this story
Delete

Ants can perform life-saving amputations on their wounded, study says

1 Share

Until the discovery of antibiotic medicine last century, doctors frequently performed amputations to save the life of a patient with an infected wound.

But humans aren’t the only animal to perform this type of surgery on one another.

Scientists have discovered that a species of ant found in the southeastern United States also perform amputations when their nestmates are perilously injured on the leg, staving off the spread of infection from an open wound and effectively saving their comrades’ life.

“The level of sophistication with which they have evolved to care for their injured is unrivaled in the animal kingdom. Our human medical system would be the closest match,” said Erik Frank, a behavioral ecologist at the University of Würzburg who led the study, in an interview Wednesday. “These amputations stopped infections from spreading into the body … the same way medieval amputations worked in humans,” he said, adding that the findings mark the first recorded example of a nonhuman animal performing an amputation on a fellow member of its species to save its life.

The study, published Tuesday in the journal Current Biology, suggests that Florida carpenter ants (Camponotus floridanus) are able to differentiate between types of wounds and adapt their healing responses accordingly. It adds to our growing understanding of the sophisticated strategies ants deploy to care for one another when injured, including by triaging the wounded and treating the infected with microbial substances.

The scientists observed the amputations in laboratory conditions as performed by the Florida carpenter ants, a reddish, black, or brown ant which typically measure under 1/2 an inch in length. Unlike some other ants, Florida carpenter ants do not have the ability to produce antimicrobial secretions from their glands to combat pathogens in wounds. “We wanted to see how a species that lost this gland would still care for their injured,” said Frank.

The scientists set out by deliberately injuring around 100 ants on the leg: either the femur (closer to the body) or the tibia (farther down the leg), to compare how fellow ants in their colony responded. They found that the ants effectively performed amputations when their nestmates had sustained femur injuries, but never performed amputations when an equivalent injury was sustained on the tibia.

In the former, a helper nestmate performed an amputation on the injured insect’s entire leg in over three-quarters of cases.

The ant amputation procedure lasted around 40 minutes and followed the same pattern each time: “They start licking the wound with their mouth parts and then they move up the leg with their mouth until they reach the shoulder. There, they will start to bite quite ferociously for many minutes at a time,” said Frank. “The injured ant will sit their calmly, allowing the procedure to occur and not complaining until the leg is cut off.”

Among the ants with a femur injury, 95 percent of those that received an amputation survived, while only 45 percent of those who did not receive an amputation survived, Frank said.

“The ants — in their world, in their context — have found a strategy that is highly efficient and has a very, very high level of success,” concluded Frank.

Laurent Keller, an evolutionary biologist who also worked on the study, said the amputations were performed very effectively. “It means that when they do the amputation they must do it in a very clean way to prevent bacteria from entering the wound,” he said.

In contrast to the treatment received by ants that sustained a femur injury, ants that sustained a tibia injury (further down the leg) were never observed receiving an amputation from fellow nestmates. “In this case, they only clean the wound,” said Keller, who said the nestmates instead provided an extended wound care session involving lots of licking.

The wound cleaning method also proved effective. While around 70-75 percent of those who received wound cleaning from fellow ants survived, only 15 percent of the ants with tibia injuries survived when they were isolated from their fellow ants and left unattended, Frank said.

One possible explanation offered by the scientists for the decision on when to perform an amputation has to do with how hemolymph — a fluid equivalent to blood — flows within invertebrates.

The theory has not been tested yet, but scans show that the tibia area of the leg has greater hemolymph flow than the femur area, meaning that pathogens that enter through the tibia will spread more quickly to the rest of the body. This, in turn, significantly shortens the window of opportunity for an amputation to stave off an infection from spreading. “If the wound is at the level of the tibia then they don’t do an amputation. This is because normally the blood — or hemolymph for insects — circulates quite rapidly. So within 40 minutes the blood will already carry the bacteria into the body of the ant,” explained Keller.

The painstaking efforts adopted by ants to care for each others’ wounds illustrates how social insects reap benefits from behaving altruistically, said Keller. “By helping each other, they are indirectly helping themselves,” he said.

“Evolutionarily speaking, the colony saves a massive amount of energy by making sure their injured keep well, rather than just throwing them away and replacing them with a new worker,” he said. Previous studies show that ants that have lost one or even two legs can still be productive members of their colony, returning to their normal running speed in as soon as one day — and are often deployed to perform the most dangerous tasks. He added: “Even in ant societies, the individual holds value.”

Read the whole story
strugk
55 days ago
reply
Cambridge, London, Warsaw, Gdynia
Share this story
Delete

The Energy Transition Requires a Holistic Approach

1 Share

Unless U.S. energy policy and industry practice is systemically shaped to intercept and exploit the exponential improvements in clean-energy technology and cost reductions now occurring, the United States could end up with the worst of all situations by 2040: a dystopian grid where energy costs are high and reliability is poor, decarbonization progress is stalled, and the economic gains that have been made over the last century are at risk.

That’s a central premise of Energy 2040: Aligning Innovation, Economics and Decarbonization by Deepak Divan, professor and the founding director of the Center for Distributed Energy at the Georgia Institute of Technology, and recipient of the 2024 IEEE Medal in Power Engineering, and his coauthor Suresh Sharma, a former General Electric executive and the entrepreneur in residence at Georgia Tech. The book explores how new sources of energy are disrupting long-held beliefs and assumptions on how energy should be generated, transmitted and distributed. In the following interview IEEE Spectrumcontributing editor Robert N. Charette talks with Divan about how to align economic imperatives and climate goals for sustainability and affordability.

One of the fundamental themes of your book is that the technological learning curve that has resulted in the rapid reduction in the costs of renewable energy has been sustained for 50 to 70 years and shows no signs of slowing down. You also write that these declines were not predicted by experts in the field just two decades ago. What do you mean by the technological learning curve? What did you find in terms of cost reductions in different types of renewable energy as a result? And why were the experts so wrong in their predictions of renewable energy costs?

Deepak Divan: The technological learning curve is at the heart of our book. We spent a lot of time in the beginning of the book going through the history of why we are where we are because it is important to understand the process and nuances of how we got here. It is quite complicated, but I’ll try to simplify it.

man smiling for a portrait in a suit jacket and white shirt  against a gray backgroundDeepak Divan

We start at a place where science lagged technology and the market by a significant amount in the early years of the power industry. In other words, the processes of taking technology to market through innovation, through tinkering, through entrepreneurs who were willing to invest, helped create the underlying structure of today’s utility industry.

When the electricity grid was established, it was the Wild West, with every entrepreneur trying to get ahead of the others with their own proprietary solutions. However, it soon became clear that the grid, which was not just a single device but a physically coupled network of a large number of devices, needed to be coordinated and controlled as a whole—very different from most previous technological innovations. Everybody’s appliances needed to work with the same voltage and the same frequency, for instance. So, electricity providers were forced to make everything work seamlessly—challenging in a world before microprocessors and power electronics.

Yet at the same time, the early electricity providers also focused on where the money was, so they ended up targeting those pieces of the market that had best return on their investments. As a result, big, broad swaths of the country, typically rural, were being left in the dark. This helped create the Public Utility Holding Company Act of 1934 that forced more regulation on the electricity industry. It also promised utilities better and more stable economic returns, but in exchange for providing universal access, and so we end up getting the grid that we have right now.

I keep thinking that Elon Musk should not be worrying so much about autonomous cars today. Give me an autonomous inverter first.—Deepak Divan

However, industry regulations also strongly influenced the way electricity providers thought. With the utility industry now regulated, it was not possible to bring innovation to market very easily. Reliability was the most important objective and any new technological innovations that might reduce reliability were frowned upon. As a result, it took 10 to 20 years to bring new technologies to market.

So, the electricity industry went from a fast-moving, risk-taking one to an industry that was very, very slow moving, very risk averse. That was fine as long as technological innovation was also moving slowly.

Over the past two decades, however, something radically changed. Traditional learning curves, where one gained experience over time and the product or service cost went down a modest amount until the next S-shaped learning curve began, started to disappear. Instead, the learning curve across many energy-related technologies and their resultant cost reductions started to happen without much notice over decades seemingly without limit, with few indications when they will ever saturate.

We’ve seen this in microelectronics ad nauseam, for example. We have also seen it reflected in the photovoltaics space, where the learning curves began in the early 1970s. Since that time, there have been hundreds of technologies that have intersected and interconnected to create a 23 percent reduction in price for each doubling in sales volume with no signs that it’s going to slow down.

The same kind of curve is occurring in the battery space because, again, it is micromaterial-based and multiple new smart materials all coming together to give you both more kilowatts and kilowatt-hours. The battery market is now tasting success; it is attracting huge investments, again, with no signs of slowing down.

Why did no one in the energy industry see this coming?

Divan: If we go back to around the year 2000, at that point, solar LCOE (levelized cost of energy) was $850 per megawatt-hour, and batteries were $1,200/KWh. There was nobody in their right mind who thought that that would ever become competitive with gas and coal sitting at around $35/KWh and $50/KWh.

No one believed that the learning rates in solar or batteries, for example, could be sustained. Everyone in the industry thought that the technology was gimmicky and was not really going to be able to scale. After all, solar panels are small little things. How could you compete with a 500-megawatt gas plant?

Additionally, the utilities all used similar 20-year integrated resource planning cycles. So, they were already making investments in terms of what needed to be done and there was not a consultancy in the world who was willing to advise them to say stop everything you’re doing and let’s start moving towards solar. There was no rational basis for that.

The energy industry also believed they had so much economic and policy clout, they could hold off any threat from renewable energy forever.

I do not think the transition to renewables and EVs can be stopped, but I think it can be made extremely messy. —Deepak Divan

A former CEO for PJM, the biggest grid operator in the United States, told me that even in 2010 there was not a single CEO of a grid operator, electric utility, automotive or oil company who thought that electric vehicles, solar power or batteries were going to be cost competitive any time soon.

But by 2015, new energy companies were disrupting energy incumbents’ long-held assumptions. This was reflected by an astounding 97.5 percent reduction in the cost of solar from 2000 to 2022, and this is installed cost! And similarly with batteries, there has been a 92 percent cost reduction over the same period that is just continuing because there are so many new technologies being brought into play.

As to why the biggest companies in the world that are responsible for a huge part of global GDP, have the smartest people in the world and are advised by the smartest consultants in the world, could not see this coming is a fundamental question that we have asked in the book.

One of the implications you discuss is that the distributed energy resources, or DERs, like solar power, windmills and large-scale energy-storage systems are going to change the electric grid from a synchronous generator and inertia-driven system to an inverter-based resource (IBR) rich grid where grid voltage and frequency are not regulated by inertial sources. Can you explain the difference, why and what needs to happen both from a technology perspective to move to a decarbonized IBR grid?

Divan: Getting to an inverter-based grid is one of the things that the industry is struggling with on the technology side. Fundamentally, the existing grid is electromechanical in nature.

There are these big, rotating, energy-generating turbine-driven synchronous machines, and over 100 years we have figured out how to make them work to make the grid reliable. All the simplifications and efficiencies, all the standardizations and designs and synchronous generators that were needed have been figured out and now there is a system that works reasonably well. The grid that has been built in the United States has been called the largest machine ever built, with all these rotating machines possessing huge amounts of rotational inertia, all rotating together in lockstep because of the way synchronous machines operate.

an aeriel view of numerous wind turbines in a line on a green rolling hillsRyanJLane/Getty Images

When even a small disturbance occurs anywhere on the grid, all of them continue to operate locked together and to share the power delivered, with the ability to clear any faults as they occur on the system. The entire system is structured around this model. While it is often called a smart grid, there’s nothing smart about it. It’s an extremely good grid but it’s really a passive grid. All the smarts are sitting 15 minutes away at the operator level. So, for 15 minutes, the system has to keep operating until the next command is received.

This enormous machine has several interesting characteristics that make it work well. One is that the grid has a lot of damping built into it. Anytime there is a deviation because of a disturbance on the system, there’s a restorative torque that automatically occurs on it.

Another characteristic is that it is usually thought that frequency is the universal parameter on the system, since all the generators essentially use a power-frequency droop principle to share power equally. However, the problem is that in the synchronous generator world, frequency command is a DC quantity, while the three-phase AC voltages are generated and locked in by the machines’ action itself, not by control action.

Now, as synchronous generators are replaced with inverters, you don’t have any intrinsic rotation or inertia in the system. We don’t have any of the attributes of damping that are automatically built into it. Further, there are now inverters with DSPs [digital signal processors] and FPGAs [field-programmable gate arrays] which allow the measurement of the grid voltage and to act very, very quickly.

For the first time in our history, decarbonized climate-friendly solutions are also lower cost than traditional fossil-energy-based solutions. For the first time ever, what is good for our wallet is also good for the planet! —Deepak Divan

In the early years and all the way until very recently, we only built what we call grid-following inverters. Essentially, the voltage of the grid was taken as given and power was pushed against it. The inverter followed the grid and power could be dispatched per utility command, which worked fine. This has allowed us to scale IBRs in many locations around the world.

The difficulty is as one gets to high penetration of inverter-based resources, the grid is no longer being formed nicely, and so the system can become unstable.

Now there is a need to start thinking about how the grid is going to be formed when we have an inverter-dominant grid. The issue is that one does not have that rotating machine, one doesn’t have that restorative torque, and one doesn’t have the system damping. None of those things are there.

Each inverter thinks it is very smart and it’s going to try to form the voltage based on local information. However, it is also going to have to interact with what another inverter is trying to do to form voltage and what another inverter is doing, and so on. This becomes a problem.

So as these inverters interact with each other, it’s often hard to keep them stable. While we have been able to demonstrate grid-forming inverters and every manufacturer now claims to have one, we do not exactly know what a grid-forming inverter should do, especially when done at scale, to ensure that they do not interact with each other, particularly when millions of inverters are deployed. This creates a challenge.

There is also the concern that each of these inverters is made by a different manufacturer. Some of them were made 20 years back, some were made 10 years back some and these now need to be compatible with what will be made in the next 10 years. They are no agreed standards. Standards are lagging by 10 years or more.

The question is what does one do, if it takes you 10 years to get a new standard out, and given that the rate of solar deployment is so high that in that time some 1,000 gigawatts of PV solar will be deployed, but none of it will be compliant with the future, as yet unknown, standard?

How do you also stabilize the grid in this environment?

Divan: The utilities today have grown up without having to worry about any of these issues. They just focused on how to restore power, how to connect this to that, how to manage the workforce, and so on. Not this dynamic beast which they have few skills in dealing with. In fact, most big electric utilities have few people in their workforce who are skilled in power electronics, because the old system did not need it.

These are very complex issues and part of the challenge is that it is a different operational paradigm than today. We do not have these fundamental issues resolved. The important question, I think, and part of the problem is that nobody can stand in public and say, “Hey, there’s a problem here!”

I keep thinking that Elon Musk should not be worrying so much about autonomous cars today. Give me an autonomous inverter first. That is a much, much more important priority in the near term.

In the book, you were careful to also lay out factors that could derail your energy vision for 2040. Could you discuss a few of them, and what might be done to avoid or minimize them?

Divan: I do not think the transition to renewables and EVs can be stopped, but I think it can be made extremely messy.

Major energy transformations have taken 50 to 70 years, and they have been very messy from a regulatory standpoint. People are pushing back against going to renewables, but I do not think they can win because at the end of the day, everybody is going to respond to the economics and functionality of inexpensive renewables and new holistic solutions.

Even if we in the United States do not do it because of the politics and incumbent resistance, the Chinese and others are going to continue to move the technology along and to drive the prices down. And so you know, you’re going to at some point say, oh, ****, I think we have to adopt this new stuff, because it’s going to seep into widespread use. By then, I am concerned that we will have been left behind.

Nobody can argue with economics of renewables in the future; it is going to drive everything. However, if you do not think about the economics and government policies properly together, they will drive bad outcomes. —Deepak Divan

Another issue that could make things messy is that the utilities do not have the ability to change easily. They must meet their reliability requirements in the near term, which becomes problematic when all these new technologies are coming in. They are not going to absorb these technologies easily.

In addition, the energy load is moving in. Data centers, especially those for AI, are coming online, as well as electric-vehicle charging, heat pumps and green hydrogen. How do you meet those requirements?

It is tempting to say, “Let’s go back to the old days and fire up the gas and coal plants.” While that is not the answer, that is something that easily could happen.

The point I am trying to make is that I do not believe this energy transition can be stopped, but it can be made extremely expensive. It can be made extremely messy and then we will have lost the climate battle at the same time. But it does not have to be so! For the first time in our history, decarbonized climate-friendly solutions are also lower cost than traditional fossil-energy-based solutions. For the first time ever, what is good for our wallet is also good for the planet!

Nobody is laying the difficulties out. Nobody. The hope with writing this book was to start this conversation because we are not seeing anybody addressing these issues holistically.

Unfortunately, most people are unable to act on something that has a long-term benefit but is more expensive in the near to midterm. They will only act in the short term. So, you have to give them a short-term reason for doing something by making it the attractive thing to do financially.

aerial view of trees and road in the shape of a electric plugViaframe/Getty Images

This is very important in my mind. Nobody can argue with economics of renewables in the future; it is going to drive everything. However, if you do not think about the economics and government policies properly together, they will drive bad outcomes.

Who do you hope will read your book, and what are the two or three fundamental messages they should take away and, more importantly, act on and when?

Divan: I think the audience is everybody who is interested in energy in general, including researchers, engineers, policymakers, investors, entrepreneurs and students. People are interested in the topics we raise. Every time I go into a room, I have six people approach me and want to talk about it. They are reading something in the news, and they have only a narrow sliver of information. They are not able to connect all the dots together.

I think part of the problem is that this field is very complex and very nuanced, and when you try to simplify it, you can get to the wrong conclusions. My objective for writing the book was that we really do not hear this line of conversation in the industry. In other words, a holistic view of the problems confronting the industry is required because everything you do intersects with something else.

The utility industry does not fully understand this. When I go to the IEEE Power and Energy Society general meeting, I go to every conference room and I ask a question about the dynamics and scaling of IBRs and distributed systems. Nobody has an answer. This is scary. I mean, this whole industry is there, and they’re absorbing gigawatts after gigawatts of renewable energy and don’t have any idea what the hell is going happen as we move to a distributed energy resources dominant zero-carbon grid (which EPRI has also set as the target for 2050).

Again, oversimplifying is going to lead us to the wrong place, not looking holistically is going to lead us to the wrong place. We have an opportunity where we have alignment between economics and decarbonization for the first time. Let’s not blow it.

This article was updated on 10 July 2024 to correct the units in solar LCOE in 2000 to US $850 per megawatt-hour instead of per kilowatt-hour.

Read the whole story
strugk
56 days ago
reply
Cambridge, London, Warsaw, Gdynia
Share this story
Delete
Next Page of Stories